Tổng bình phương là gì

     

Những hằng đẳng thức xứng đáng nhớ chắc quen thuộc gì với chúng ta . Từ bây giờ Kiến sẽ nói kỹ rộng về 7 hằng đẳng thức quan trọng : bình phương của một tổng, bình phương của một hiệu, hiệu của hai bình phương, lập phương của một tổng, lập phương của một hiệu, tổng nhì lập phương và sau cuối là hiệu nhị lập phương. Chúng ta cùng tìm hiểu thêm nhé.Bạn đang xem: Tổng bình phương là gì

A. 7 hằng đẳng thức đáng nhớ

1. Bình phương của một tổng

Với A, B là những biểu thức tùy ý, ta có: ( A + B )2= A2+ 2AB + B2.

Bạn đang xem: Tổng bình phương là gì

Bạn đã xem: Tổng bình phương là gì

Ví dụ:

a) Tính ( a + 3 )2.b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương của một tổng.

Hướng dẫn:

a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32= a2+ 6a + 9.b) Ta có x2+ 4x + 4 = x2+ 2.x.2 + 22= ( x + 2 )2.

2. Bình phương của một hiệu

Với A, B là những biểu thức tùy ý, ta có: ( A - B )2= A2- 2AB + B2.


*

3. Hiệu nhị bình phương

Với A, B là các biểu thức tùy ý, ta có: A2- B2= ( A - B )( A + B ).


*

4. Lập phương của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )3= A3+ 3A2B + 3AB2+ B3.


*

5. Lập phương của một hiệu.

Với A, B là những biểu thức tùy ý, ta có: ( A - B )3= A3- 3A2B + 3AB2- B3.

Ví dụ :

a) Tính ( 2x - 1 )3.b) Viết biểu thức x3- 3x2y + 3xy2- y3dưới dạng lập phương của một hiệu.

Hướng dẫn:

a) Ta có: ( 2x - 1 )3

= ( 2x )3- 3.( 2x )2.1 + 3( 2x ).12- 13

= 8x3- 12x2+ 6x - 1

b) Ta có : x3- 3x2y + 3xy2- y3

= ( x )3- 3.x2.y + 3.x. Y2- y3

= ( x - y )3

6. Tổng nhị lập phương

Với A, B là các biểu thức tùy ý, ta có: A3+ B3= ( A + B )( A2- AB + B2).

Xem thêm: Vt Là Gì Thắc Mắc Lưu Vt Là Gì Thắc Mắc Lưu Vt Là Gì, Lưu Vt Là Gì

Ví dụ:

Hướng dẫn:

a) Ta có: 33+ 43= ( 3 + 4 )( 32- 3.4 + 42) = 7.13 = 91.b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13= x3+ 1.

7. Hiệu hai lập phương

Với A, B là những biểu thức tùy ý, ta có: A3- B3= ( A - B )( A2+ AB + B2).

Chú ý: Ta quy cầu A2+ AB + B2là bình phương thiếu thốn của tổng A + B.

Ví dụ:

a) Tính 63- 43.b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) bên dưới dạng hiệu nhì lập phương

Hướng dẫn:

a) Ta có: 63- 43= ( 6 - 4 )( 62+ 6.4 + 42) = 2.76 = 152.b) Ta bao gồm : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3- ( 2y )3= x3- 8y3.

B. Bài xích tập từ bỏ luyện về hằng đẳng thức

Bài 1.Tìm x biết

a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

Hướng dẫn:

a) Áp dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3- b3.

( a - b )( a + b ) = a2- b2.

Khi kia ta bao gồm ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

Xem thêm: Hướng Dẫn Cách Làm Ô Mai Sấu Đã Ngâm Đường, Cách Làm Ô Mai Sấu Giòn Không Cần Nước Vôi Trong

⇔ x3- 33+ x( 22- x2) = 0 ⇔ x3- 27 + x( 4 - x2) = 0

⇔ x3- x3+ 4x - 27 = 0

⇔ 4x - 27 = 0

Vậy x=

*

b) Áp dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2- b3

( a + b )3= a3+ 3a2b + 3ab2+ b3

( a - b )2= a2- 2ab + b2

Khi kia ta có: ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

⇔ ( x3+ 3x2+ 3x + 1 ) - ( x3- 3x2+ 3x - 1 ) - 6( x2- 2x + 1 ) = - 10

⇔ 6x2+ 2 - 6x2+ 12x - 6 = - 10

⇔ 12x = - 6

Vậy x=

*

Bài 2:Rút gọn gàng biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2

2x2+ 4xy B. – 8y2+ 4xy- 8y2 D. – 6y2+ 2xy

Hướng dẫn

Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2

A = x2– (2y)2–

A = x2– 4y2– x2+ 4xy - 4y22

A = -8y2+ 4xy

Hãy nhớ nó nhé

Những hằng đẳng thức đáng nhớ bên trên rất đặc trưng tủ kỹ năng của bọn họ . Thế nên chúng ta hãy phân tích và ghi ghi nhớ nó nhé. Các đẳng thức kia giúp bọn họ xử lý các bài toán dễ và nặng nề một phương pháp dễ dàng, chúng ta nên làm đi làm việc lại để phiên bản thân rất có thể vận dụng xuất sắc hơn. Chúc các bạn thành công và chuyên cần trên con phố học tập. Hẹn các bạn ở những bài xích tiếp theo